But why?
Bernd
But why?
Bernd
Smartfocus works very well with refractors⦠but not so much with scopes with central obstruction like SCTs or Newts. This why it is recommended to switch it off by the SGP developers
Thanks. I eventually read this hint and immediately forgot it again, because I use a refractor only.
Bernd
Thanks for the continued discussion. After spending some time testing yesterday, Iād generalize Bilgebayās statement to say that SGP focus doesnāt work very well with SCTs. It obviously canāt handle anything significantly away from focus (e.g. star rings instead of dots) and even in the region where it does recognize stars, its ability to obtain a good out of focus number seems extremely limited. Thus, what I tend to be seeing is a McDonaldās double arches M where the reported focus gets worse before it gets better. Thus, the focus chosen by the autofocus often does not pick the best choice on the curve. Presumably brighter stars/better SNR might improve things, but I had much higher hopes for the autofocus functionality in SGP. As is, while it might be able to track focus if I get it set up perfect, I canāt possibly rely on it to find focus from night to night where the current focus point will have drifted from the last focus the night before
Any suggestions on how to improve the performance Iām seeing would be appreciated.
Thanks,
Beo
My own experience is that SGP works quite well with Cassegrain type scopes. I use SGP with a 12" f/8 Meade LX850 and get excellent AF focus results. You may need to experiment more with the various AF parameters to find a combination that works with your scope.
I found that when trying to pick the number of focuser steps between focus data points, you want that number to be large enough that there is a significant change in HFR between each data point. I recommend that the spread between the best (smallest) HFR and the initial HFR be at least 3x and 4x may be needed. I also think you should use 9 data points and select your exposure lengths to be long enough to record plenty of stars.
It is true that the auto focus routine works most reliably when starting with a decently focused image but that is not a hard requirement to meet. Once an imaging run is started, the images should never be far from focus when each AF runs starts.
Charlie
Let me put in a plug (once more) for a fairly simple enhancement to the auto-focus routine that, IMHO, would make a DRAMATIC improvement in focus reliability for central obstruction scopes, of which the many focus challenges they experience are well documented above.
The focus routine needs a sanity check feature, such that if the focus position it is currently working in or the end result focus value do not pass this sanity check, the focus would return to a certain value that is known to be reasonably good.
The sanity check I propose is the least square fit focus line (LSF line) that has been derived over several nights or at least a fairly sizable number of focus runs over a wide range of temperatures. The relationship between focus position versus temperature is close to a straight line for most scopes and its specification only requires two numbers, a slope (which is the change in focus position for 1 degree change in temperature), and the intercept⦠This is easy to determine using any of dozens of free sites on the web if you feed them pairs of focus positions/temperatures.
I have determined these parameters for every scope I have ever owned, which have included several refractors, a 12" RC, a 14" Celestron Faststar, an 11" Celestron RASA. All of these scope had a consistent LSF line that I could use reasonably well for an entire night of imaging, only doing an initial focus run.
The proposed focus enhancements could work this way with SGP:
Implementing these suggestions would not keep you from using the focus routine exactly the same as you do now if your scope does not have a consistent LSF line.
What I have experienced many times over the past several years using the SGP focus routine is the following:
So last night I worked through the guide and tweaked my settings and was moderately successful at getting a good V curve. However, there are a couple of issues that could potentially be addressed with improvements in SGP, so Iāll post here in the hopes that the team will note and consider.
My focus motor drives the fine focus knob on my FeatherTough replacement to the stock (mirror) focuser. Iām using an 11" EdgeHD OTA with the mirror lock clutches slightly loose so that it can drag the mirror with the focuser but doesnāt get much mirror flop in use. However, when focusing, the mirror DOES flop (shift), and that causes hysteresis in focusing. Thus, when the current algorithm goes from center to edge, the first couple of steps are taking up the slop in the tilt before the mirror actually starts moving. Thus I always end up with a nearly flat right tail before it starts dropping towards the focus point. This of course also means that when it returns to the final focus position, it approaches from the wrong direction and the hysteresis means it doesnāt return to the same focus point.
I plan to make my own fix for this since I wrote all the code, but Iāll have to do it at the motor drive level rather than in the ASCOM driver (where Iād prefer) since the driver doesnāt really know the condition of the motor until SGP calls and asks (which appears to be extremely slow polling for some reason). However, itād be really nice if SGP had an option for dealing with hysteresis and could use unidirectional approach to all targets.
The other issue is really a user interface issue, and I should probably start another thread on this, but Iāll get comments here first. The settings for things like autofocus are really fragile in SGP. What I mean by that is that the settings are basically just going into the current sequence and donāt go into the profile unless I go in and manually edit that profile. And of course if I close the sequence and load another one, the settings I just fixed are gone because the profile loads its own settings. Hopefully I stored the sequence I worked on so that theyāre still there, but most of the time when Iām experimenting I just start with the default profile that I donāt have any reason to save, so Iāve lost settings more than once. Not to mention that I have to manually move those settings into another sequence that I may want to continue with those new settings. I understand whatās going on, but Iād like to see some options to easily update the profile and update a sequence from a profile, etc. If these features are already there I donāt know where they are or how to use them.
Thanks,
Beo
Hi Beo,
I am referring to your second and third paragraph. SGP has a feature called āfocuser backlash compensationā. Please read the corresponding passages (pages 49, 50) of the PDF manual.
Bernd
Excellent, thanks! It would have made sense for it already to be there, but I didnāt see anything obvious. Iāll go dig through the manual. Need to find the PDF as right now Iām logging in remotely and reading the online help!
Thanks,
Beo
Found it and tested last night. I think I may need to tweak some settings or possibly just reverse the direction of travel for everything, but I need to actually test while Iām in the observatory and can confirm how things are working. I also still need to determine why SGPs reaction/update time is so slow. I know my focuser isnāt that slow so I donāt know if this is just inherent in SGP not polling fast enough, or if thereās something off in my ASCOM driver.
Thanks,
Beo
Just wanted to remind that this problem is still giving me very hard time⦠I have to baby sit all the imaging and focusing runs⦠in the below image, you can see how the galaxy cores are knocking off the FWHM average⦠and they are not in line with the star FWHM values⦠I am watching star values for each step and taking note of the step where smallest star values are obtained. After the AF routine finishes and lands the focuser wherever it deems fit Iām manually moving to the real focus point to capture useable frames⦠otherwise all the frames are out of focus.
I have seen other software handle this via a couple different ways -
Focusing should be allowed about 1 degree from actual target. This ensures you are not picking up bright portions of the target for focusing. Should easily solve a few issues.
Focus check (more like sanity check) - if no significant improvement is found between before and after running AF, the previous focus position needs to be retained.
Allowing focusing on a single star - admittedly not the best approach (as compared to full field star selection), but can be used as a fail safe option. I also believe implementing such a solution is fraught with many potential pitfalls - primary one being, the ability to select a star. However, with proper HDF and ADU values, this can be overcome to a certain degree.
Dhaval
Thank you for your input Dhaval. In my case, focusing 1 degree away from the target is not option as recentering can be a real chore for some targets where very few stars are available in the fov.
Regarding your second and third suggestions, Iām sure Ken and Jared will come up with a solution at their earliest convenience. Until then, Iām picking only the targets that I can work with with the current system.
Iāve found a similar problem w/ galaxies and more often than not - globular clusters. The cores simply donāt get rejected in the AF calculation. I would suggest something like the following which will separate individual stars from more lumped objects like galaxy or glob cores:
In terms of UI, the suspected extended objects could be highlighted in red and the stars in green.
Gabe
Well, I had to switch back to 2000mm focal length because of focusing and plate solving issues. Working at 3910mm was a real chore.
Regarding your case, the only way I see it, with the current program, is to take the place and walk a few degrees in a region that doesnāt have galaxies, come back later with the focus adjusted
This post is over 2 years oldā¦weāve made massive changes to Auto focus in that time with much more rigorous fitting methods and rejection.
Jared